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Abstract 

The blood supply chain comprises several echelons, such as the collection, production, storage and usage of 

blood units. Blood donation systems are fundamental to ensuring the well-being of the population, and their 

value has been recognised for many years. Given the importance of blood in human life, the effectiveness and 

efficiency of the operations of this supply chain becomes a fundamental aspect for their progress. This 

efficiency can be achieved by optimising different processes in the various stages of the supply chain. However, 

by integrating processes between different stages, the efficiency level obtained can be improved. This is the 

aim of this work which intends to integrate two processes from two different echelons of the supply chain: 

appointment scheduling of blood donations and its inventory management, applied to a real case study of the 

AVIS Milan collection centre and the Niguardia Hospital which receives the blood units. In this sense, strategies 

and relations are defined through a mathematical model that allows the integration of both processes, with the 

concrete objectives of guaranteeing a balanced production of blood units and minimizing the total inventory 

costs. This is one of the first works in the literature that aims at the integration of the two described processes. 

Although future validation with more concrete data is needed, this work can be seen as a good starting point 

for a more complete integration of the two processes described. 

Keywords: Blood Donation Supply Chain, Appointment Scheduling, Inventory Management, Optimization, 

Multi-Objective, Mathematical Programming 

1. INTRODUCTION 

Blood is a key resource for health care systems, as is 
continuously needed in the treatment of several 
diseases, organ transplants and surgeries. Someone 
needs blood every two seconds and one in seven 
people entering a hospital needs blood or blood 
products (Özener et al., 2019). The blood donation 
system aims to provide an adequate supply of blood 
units and blood products to transfusions centres and 
hospitals and, therefore, they have a fundamental 
role on the welfare of the population, since an 
insufficient availability of blood may result in loss of 
lives. Managing the BDSC is a very challenging task as 
blood is not an ordinary commodity. In the first place, 
blood can only be obtained through voluntary 
donations and cannot be manufactured and, 
secondly, blood is a perishable item, i.e., it must be 
discarded if not used on time. Typically, a BDSC is 
divided into four main echelons: collection, 
production, storage and distribution (Osorio et al., 
2015). The donation process starts in the collection 
centre, being either stored as whole blood (WB) or 
processed into different products such as red blood 
cells (RBC), plasma, and platelets. Afterwards, the 
blood and the blood products are either stored or 
transported to hospitals or transfusion centres. Here, 
they can also be stored or used, depending on the 

network design of the supply chain. Even though 
there are different network designs for the BDSC, the 
management of each one of them has the common 
objective of being capable of meeting the demand 
while avoiding shortages and wasted units. To do so, 
several decisions must be made in all echelons, 
whether they are strategic, tactical, or operational. 
Therefore, many management tools, such as 
optimization tools, have been developed so far and 
have been applied by collection centres, blood banks 
and hospitals, in order to increase the effectiveness 
of services.  
AVIS Milan, the Milan Department of the main 
collection centre in Italy has recently started to 
implement an appointment scheduling system for 
blood donation developed by Baş et al., 2018. This 
system aims to balance the production of blood units 
based on a demand profile while providing a constant 
feeding of blood to the blood donation system. 
Although the model reached its purpose, the 
inventory management of the blood units was not 
addressed. 
Additionally, the main goal for this organisation is to 
supply blood units to the Niguardia Hospital which is 
responsible for performing the inventory 
management aiming to keep enough stock to fulfil 
the demand while minimising costs and wastages. 
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These two problems are separately managed since 
they are evaluated by two different decision-making 
centres. 
In this context, the development of an integrated 
model could potentially lead to more effective and 
efficient management tools and contribute to 
improve the overall performance of the BDSC. 
2. BLOOD SUPPLY CHAIN CHARACTERIZATION 

Blood supply is central to the functioning of all health 

care systems as it is fundamental and necessary in 

various medical procedures, such as surgery, organs 

transplantation, cancer, and blood disorder 

treatments. The BDSC is a particular case of supply 

chains since blood cannot be produced and can only 

be acquired through volunteer donations. 

Furthermore, blood is a short-expiry product and a 

supply chain for a perishable product has specific and 

unique characteristics. By definition, a perishable 

product has a limited lifetime during which can be 

used, after which it should be discarded (Nagurney et 

al., 2012). 

However, WB consists of several components that 

can be obtained from a single donation: RBC (45%), 

white cells and platelets (<1%) and plasma (55%). In 

modern medical treatments, patients may receive 

WB or just the particular components of the blood 

necessary to treat their specific condition (Hillyer et 

al., 2007). Consequently, as WB is perishable, blood 

components are also perishable although they have 

different shelf lives. WB can be stored for up to 35 

days and is used to treat patients who need all the 

blood components, such as patients who have 

suffered a significant loss of blood due to trauma or 

surgery. Concerning RBC, if refrigerated, they have a 

shelf life up to 42 days and is mostly used on patients 

with blood disorders like anemia. Platelets is the 

constituent who presents the shortest shelf life since 

it can only be used for up to 5 days and are more 

often used during cancer treatments as well as organ 

transplants. On the other hand, plasma can be frozen 

and kept for 1 year and is commonly used in trauma, 

burn and shock patients. 

In addition, there are four major blood groups 

established by the existence or absence of two 

antigens (A and B) on red cells: Group A has the A 

antigen on red cells and B antibodies in the plasma; 

Group B has only the B antigen on red cells and A 

antibodies in the plasma; Group AB has both A and B 

antigens on red cells; Group O has both A and B 

antibodies in the plasma. Furthermore, these are 

subdivided into two subgroups considering the 

presence (+) or absence (-) of the Rh factor, 

establishing the 8 known blood groups: A+, A-, B+, B-, 

AB+, AB-, O+, O- (Hillyer et al., 2007). In terms of the 

transfusion process, the interrelationship between 

these blood groups is quite complex since only some 

of these blood groups are compatible with each 

other. However, the aim is to minimize the blood 

substitution and use every patient’s own blood type 

as much as possible. 

According to Osorio et al. (2015), the BDSC can be 

divided into four echelons: collection, production, 

storage and distribution. The collection stage is 

responsible to perform donations and receive blood 

units from donors. In the production echelon, the 

blood undergoes under a testing process. Afterwards, 

blood units are either kept in inventory and then 

transported so they can be used to treat patients. 

Associazione Volontari Italiani del Sangue (AVIS) is 
the major Italian non-profit association for blood 
donation. AVIS pursues an aim of public interest: to 
ensure an adequate availability of blood and blood 
components to the Italian population, through the 
promotion of donation in a periodic, free of charge, 
unpaid and anonymous method and, in some cases, 
the association even participates directly in the 
collection process. Additionally, AVIS is also 
responsible for the correct use of blood and its 
components, its quality, ensuring that all patients 
have the same right to receive transfusion for their 
treatments. In this particular case, we consider one of 
the largest departments of the association, the Milan 
department, referred to as AVIS Milan. This 
department has the main function of providing blood 
to one of the largest hospitals in Milan, the Niguarda 
hospital, being responsible for its collection. 
In this particular case, we consider one of the largest 
departments of the association, the Milan 
department, referred to as AVIS Milan. This 
department has the main function of providing blood 
to one of the largest hospitals in Milan, the Niguarda 
hospital, being responsible for its collection. 
This dissertation aims to optimize this specific blood 
donation supply chain. AVIS Milan is responsible to 
perform the blood donations through appointment 
scheduling tools and Niguardia Hospital is responsible 
to propper manage the inventory of these blood 
units. Since these are two separate decision centres, 
an integration of these two processes would be 
benefitial to the supply chain. The addressed problem 
will be specified with more detail upfront.  
3. LITERATURE REVIEW 
Since the goal of this work relies on the integration of 

blood collection with the inventory management, 

these two stages are explored in the literature 

review, as well as integrated models regarding other 

stages of the supply chain. 

Blood Collection 

In this echelon of the BDSC, according to Osorio et al. 
(2015), there are three different levels at which 
decisions can be made. Decisions at the strategic 
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level have a long-term impact on the company’s 
approach, such as the infrastructures’ location, 
capacity, and staff definition. Moreover, these 
decisions influence other lower-level decisions, such 
as the tactical level decisions which have a middle-
term impact. These decisions include the definition of 
policies, collection points, staff allocation and 
collection campaigns planning. Finally, the 
operational level comprises decisions that are taken 
daily, such as scheduling and collection methods. 
Therefore, this review focuses on the operational 
level which is directly linked to the appointment 
scheduling problem addressed in this work. 
Many problems have been studied and many models 
have been developed in the literature to support 
decisions in the collection process among which we 
can highlight the quantity of blood products to be 
collected, collection strategies, planning for 
collections and donor appointments. 
The study of the amount of blood to be collected is 
undoubtedly the most studied problem in the 
literature at this echelon since it is directly related to 
the main objective of reducing the amount of wasted 
blood units, being this an extremely valuable product 
due to its perishability and the way it is obtained. One 
of the pioneering studies related to this problem was 
carried out by Cumming et al. (1976) where a 
forecasting model is developed to improve blood 
collection by reducing shortages and preventing 
overstocking. However, this model does not consider 
some features which are essential when dealing with 
BDSC, making it less relevant when dealing with 
procurement situations (Osorio et al., 2015). Given 
the blood characteristics mentioned in Chapter 2, 
three collection policies can be considered: collect 
every available blood from donors, collect a particular 
amount or collect a specific quantity to achieve a 
precise inventory level (e.g., Blake et al. (2013)). 
According to Lowalekar and Ravichandran (2010), the 
first policy might lead to huge wastages and 
therefore, the best option might be to reduce the 
collected blood to a certain value to prevent over 
collection. Later, Lowalekar and Ravichandran (2011) 
develop a simulation-based model which aims to 
determine the optimum level of components at a 
blood bank in India. However, the authors conclude 
that it is not optimal for a blood bank to fractionate 
large blood quantities since this may lead to high 
operational costs and high levels of wastage in the 
system. In addition to collection policies, collection 
methods and their impact on supply chain 
performance have also been studied in the literature. 
For example, Madden et al. (2007) explore the impact 
of two different collection methods (fractionation 
and double RBC donations by apheresis) under 
different policies for RBC. 

Blood Donation Appointment Scheduling  

Scheduling donor appointments improves the 
collection process, not only from the perspective of 
the collection centres, in terms of the resource 
allocation, but also from the donor perspective, 
which is associated with the quality of the service 
provided. Alfonso et al. (2013) evaluate several 
scenarios and configurations of blood collection 
systems where Petri net models are used to describe 
all relevant donor flows. Additionally, Alfonso et al. 
(2015) present an optimization model of queue 
dynamics of the blood collection system for fixed-site 
capacity planning and blood donors’ appointment 
scheduling in order to improve different performance 
measures. The authors conclude that the 
combination of a queuing-based approximation and 
mathematical programming approach is useful in 
order to schedule blood donation appointments. 
More specifically and more closely related to one of 
the problems addressed in the present work, Baş et 
al. (2018) is the first research paper that defines and 
proposes a framework for the Blood Donation 
Appointment Problem. The proposed architecture 
consists of two stages: an offline pre-allocation of the 
available time slots considering every blood type and 
an online assignment of each incoming donor 
reservation request to a slot created in the previous 
step, considering the donor’s blood type as well. The 
former is based on a mixed integer linear problem 
and the latter is based on a prioritization policy. The 
main goal is to balance the blood production for each 
blood type, ensuring a fairly constant supply of blood 
units to the system. Since the parameters for this 
model are assumed to be deterministic, there are 
several uncertainty factors that are not considered 
such as the uncertainty arrivals of non-booked donors 
and random no-shows of already booked donors 
(Lanzarone and Yalçındağ, 2019). The integration of 
the Blood Donation Appointment Problem, which can 
be considered as a stochastic problem in its nature, 
with other steps of the BDSC might help to better 
predict parameters that cannot be assumed to be 
known a priori. The review of integrated models will 
be explored further ahead in section 3.3. Other 
earlier papers can still be considered. Pratt and 
Grindon (1982) study donor waiting times by varying 
from a 9-bed system to a 12-bed system with the 
number of accepted donors in three different 
scheduling strategies. Later, Michaels et al. (1993) 
also developed a computer simulation to evaluate 
scheduling strategies for the American Red Cross with 
the aim of decreasing donor transit times and 
increasing the staff utilization. However, in this case, 
the strategies scheduled donors and walk-in donors 
and it is concluded that having a fully scheduled 
system implemented with no open slots for walk-in 
donors would be the best option in terms of the 
system performance but the worse regarding the 
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quality of the service provided since every walk-in 
donor would be rejected. Therefore, the 
identification of donor arrival patterns can play a 
crucial role in the functioning of the system, 
especially in blood centres without fixed 
appointments for blood collection.  
Inventory Management 
Inventory is the echelon of the BDSC that has 
received the most attention so far in the literature 
mainly due to the short life of the blood. As 
mentioned above for the collection echelon, 
decisions in this stage can also be categorized based 
on three hierarchical levels. Once more, strategic 
decisions are related with long-term planning such as 
network design and information systems. Tactical 
decisions are concerned with inventory policies 
definition and resources allocation while at the 
operational level the decisions are mostly associated 
with daily quantities to order to fulfil the demand 
(Osorio et al., 2015). 
It can be said that more general perishable inventory 
theory can potentially be applied to the blood 
management. However, techniques implemented in 
more industrial backgrounds, for example, just in 
time, are not suitable for this type of supply chain, 
since it can lead to inventory shortages (Chapman et 
al., 2004). Therefore, the majority of the research 
papers related to this topic are directly associated 
with the BDSC. Many complex inventory policies 
developed so far are based on a variety of analytical 
and simulation techniques, with the main principle 
that, by improving the complexity and, consequently, 
the accuracy of the models, wastage can be reduced. 
Nevertheless, some models are focused on specific 
decisions and do not contemplate some constraints 
that might be considered as fundamental and could 
affect the decision in this stage. There are several 
problems that have been studied in the literature, 
among which we can highlight the following: 
inventory policies, issuing policies and inventory 
allocation. These will now be reviewed. 
Regarding inventory policies, the models aim to set 
inventory levels and determine order quantities that 
consider uncertainty, but also the trade-off between 
cost associated to shortages and wastage and 
efficiency for the different collection strategies. 
Several general inventory policies can be found in the 
literature but regarding the BDSC, the majority are 
periodicals (Osorio et al., 2017) and are focused on 
fixed order intervals (order-up-to models). This 
means that the stock levels are evaluated 
periodically, usually at the end of each day (Osorio et 
al., 2017), and a regular fixed order is placed or not, 
considering the stock level. Two of the earliest 
studies regarding this issue are conducted by Cohen 
(1976) which aims at finding optimal ordering policies 
for any perishable product and by Nahmias et al. 

(1976) where two different policies are presented to 
meet two types of demand. More recently, many 
techniques have been used to address inventory 
policies such as simulation, mathematical 
programming, and dynamic programming. For 
example, Haijema et al. (2007) developed a combined 
Markov dynamic programming and simulation 
approach and applied it to a regional blood bank 
problem. This is the first work to determine the 
production and inventory policy to minimize both 
shortage and outdating of blood platelets. Later in 
2009, the same authors extended their previous 
work. Haijema et al. (2009) modelled a stochastic 
dynamic programming simulation approach which 
included periods where no collection is performed 
(Christmas, New Year, Easter) and led to a reduction 
of the annual shortage in the blood bank. 
Issuing policies which are related with the age 
sequence of units provided to meet the required 
demand have also been addressed in the literature. 
According to Abbasi and Hosseinifard (2014), similarly 
to the inventory policies, issuing policies have also a 
huge impact on the shortage and wastage levels, 
since we are dealing with a perishable inventory 
system. The most adopted policies within the BDSC 
are FIFO, which uses the oldest product first, and Last 
In, First Out (LIFO), which uses the freshest product 
first. For example, Najafi and Ahmadi (2017) presents 
a multi-objective integer programming to manage 
inventory in a hospital blood bank using FIFO which 
aims to study two key performance indicators, blood 
shortage and wastage. This paper considers uncertain 
supply where the blood bank does not receive all 
ordered blood units, the age of the blood units and 
two types of patients. Although Pierskalla et al. 
(1972) and Abdulwahab and Wahab (2014) show that 
FIFO usually outperforms LIFO in several key 
performance indicators, sometimes is not the best 
option to issue oldest blood first since some 
treatments requires fresh blood (Katsaliaki, 2008). 
Inventory allocation problems are related with the 
most efficient location to allocate inventory in the 
BDSC. There are centralized and decentralized 
systems and Carden and Dellifraine (2006) evaluate 
both advantages and disadvantages associated to 
both types. The authors conclude that a centralized 
system presents a better performance regarding 
meeting the need in the hospitals, but decentralized 
systems are a better option in terms of costs. 
Hosseinifard and Abbasi (2018) demonstrate that the 
centralization of hospital’s inventory can increase the 
sustainability and resilience of the BDSC. 

Integrated Models 
The BDSC has received a significant amount of 
attention from researchers over time, but this study 
is mainly focused on the analysis of each echelon of 
the supply chain independently. Nevertheless, due to 
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recent advances, there is a certain tendency to 
increasingly integrate two or more echelons of the 
BDSC. 
Closely related to the aim of this study, Özener et al. 
(2019) integrate inventory control policies with 
donation tailoring and scheduling decisions. These 
authors are the first to define the Blood Donation 
Tailoring Problem (BDTP) which has the aim of 
minimize the operational costs, including donation, 
inventory, and disposal cost, while satisfying the 
demand at the same time during a planning horizon. 
The objective is accomplished by developing donation 
schedules through heuristic methods. On the other 
hand, Ensafian and Yaghoubi (2017) develop a bi-
objective model with the aim of maximizing the 
freshness of platelets and minimizing the total costs. 
The model considers both FIFO and LIFO policies, and 
two types of collection methods. 
Kohneh et al. (2016) develop a bi-objective mixed 
integer programming (MIP) model to design a BDSC 
network under an emergency state. The purpose of 
this work is to minimize costs and maximize the 
covering of blood donors in order to optimize several 
decisions that need to be made in such case, such as 
the decisions related to the amount of blood donated 
to permanent and temporary blood donation centres, 
the amounts of blood products transported between 
different levels of the chain, among others. Similarly, 
Zahiri and Pishvaee (2017) study the network design 
of the BDSC proposing a bi-objective MIP model with 
the objective of minimize total costs and maximizing 
the unsatisfied demand among demand zones. 
Although blood compatibility is considered, inventory 
levels, the shelf time of blood products and 
perishability are disregarded. Finally, we can still 
consider the work developed by Samani et al. (2018) 
which is one of the most complete studies in terms of 
integrating several parameters such as perishability, 
inventory levels at both demand zones and collection 
centres, demand uncertainty, irregular supply, 
shortages and the network design. The authors 
develop a multi-objective MIP model to design an 
integrated BDSC network. 

Conclusions 
Although the frequency of integrated models has 
been increasing over the years, the integration of 
appointment scheduling and inventory management 
has hardly been explored. Therefore, this work should 
have an important contribution to the literature in 
this area. 
4. MODEL FORMULATION 

Problem Statement 
Firstly, it is important to understand the supply chain 

functioning of the AVIS case study. In Figure 1, an 

operational scheme is presented in order to 

understand both the product flow and the processes 

included in each stage. In AVIS facilities, blood is 

collected every day and as mentioned above, many 

collection centres are implementing donor 

reservation systems and AVIS Milan is no exception. 

After it is collected, blood is transported twice a day 

to Niguardia Hospital, where it is consequently stored 

and used. From here, blood can either be used to 

treat patients in this same hospital or it is transported 

to be used in other clinics. 
Figure 1 – AVIS Supply Chain 

There are two separate decision centres. On the one 
hand, the blood collection process is intended to be 
as constant as possible, avoiding fluctuations. To 
balance the blood collections in terms of the total 
number of units produced per day and per blood 
type, a blood donation appointment scheduling 
system model was proposed by Baş et al. 2018 which 
is based on a profile demand. On the other hand, 
Niguardia Hospital intends to receive a constant and 
the highest amount of blood as possible, in order to 
avoid any type of shortage. At this level, the 
inventory management is performed to properly 
address the blood units while minimizing the 
inventory size and wastages. 
In summing up, despite both steps are separately 
managed and having different objectives, these issues 
must be connected. Therefore, the main challenge 
relies on developing a model that integrates 
inventory management rules such as minimizing 
inventory costs and the utilization of blood units with 
the appointment scheduling for blood donors. 

Model Clarification and Formulation 
The following model is based on the work previously 
developed by (Baş et al., 2018) regarding the 
appointment scheduling system. In a simplistic way, 
this model considers an offline preallocation phase 
which is responsible to reserve slots for each blood 
type and an online allocation phase which is 
responsible to assign a slot to a donor whenever 
he/she intends to donate blood. The attribution of 
slots is based on a expected number of donors. It is 
intended now to integrate the scheduling of donors 
with inventory management rules in order to have a 
better control of the blood supply chain. A safety 
stock level for each blood type, as well as inventory 
updates according to the blood usage and blood units 
that were collected are now introduced. 
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The notation required for the model is presented in 

Table 1, while model parameters and decision 

variables are introduced in Table 2. 
Table 1 – Model Notation 

Sets 

𝑏B Set of blood types 
𝑡𝑇 Set of time periods (days) 

Table 2 – Parameters and Decision Variables 

Parameters 

𝑑𝑏 Expected number of booked donors over 
T with blood type b 

φ  Flexibility degree associated with 𝑑𝑏 

𝑑𝑎𝑡
𝑏 Number of already booked donors at 

period t with blood type b  

𝑑𝑛𝑡
𝑏  Expected number of non-booked donors 

at period t with blood type b  

𝑑𝑚𝑡
𝑏  Demand for blood type b at period t  

ss𝑏 Safety stock level for blood type b 
ii𝑏 Inventory level at t=0 for each blood 

type b 
ic cost of holding inventory 
θ  maximum capacity (maximum donations 

per period) 
𝑀𝑎𝑥𝐼𝑛𝑣𝐶𝑜𝑠𝑡  maximum value for Inventory Cost 
𝑀𝑎𝑥𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛  maximum value for Variation 
𝛼  weight for Inventory Cost 
𝛽  weight for Variation 

Decision Variables 

𝑦𝑡
𝑏  

Number of planned units for blood type 
b at period t  

𝑥𝑡
𝑏 

Number of preallocated slots for blood 
type b at period t 

𝐼𝑡
𝑏  

Inventory of blood type b at the end of 
period t 

𝑤𝑏 Variation of 𝑦𝑡
𝑏    

The mathematical model for the proposed integration is 

presented next: 

 

min 𝑍 = 𝛼
∑ 𝐶𝑜𝑠𝑡𝑡𝑡

𝑀𝑎𝑥𝐼𝑛𝑣𝐶𝑜𝑠𝑡
 +  𝛽

∑ 𝑤𝑡
𝑏

𝑏

𝑀𝑎𝑥𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 

(1) 

 

Subject to: 

𝑤𝑡
𝑏 ≥  𝑦𝑡+1

𝑏 − 𝑦𝑡
𝑏   , ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 

 

(2) 

𝑤𝑡
𝑏 ≥  𝑦𝑡

𝑏 − 𝑦𝑡+1
𝑏   , ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (3) 

 

𝐶𝑜𝑠𝑡𝑡 =  ∑ 𝐼𝑡
𝑏

𝑏

× 𝑖𝑐   , ∀ 𝑡 ∈ 𝑇 (4) 

𝑦𝑡
𝑏 =  𝑑𝑎𝑡

𝑏 +  𝑑𝑛𝑡
𝑏 + 𝑥𝑡

𝑏 , ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (5) 

 

∑ 𝑦𝑡
𝑏

𝑏

≤  𝜃, ∀ 𝑡 ∈ 𝑇 (6) 

 

 

∑ ∑(𝑥𝑡
𝑏 + 𝑑𝑎𝑡

𝑏) 

𝑡𝑏

≤ (1 +  𝜑)𝑑𝑏 , ∀ 𝑏 ∈ 𝐵 (7) 

 

(1 −  𝜑)𝑑𝑏 ≤  ∑ ∑(𝑥𝑡
𝑏 + 𝑑𝑎𝑡

𝑏) 

𝑡𝑏

, ∀ 𝑏 ∈ 𝐵 (8) 

 

𝐼1
𝑏 =  𝑦1

𝑏 +  𝑖𝑖𝑏 − 𝑑𝑚1 
𝑏 , ∀ 𝑏 ∈ 𝐵 (9) 

 

𝐼𝑡>1
𝑏 =  𝑦𝑡>1

𝑏 + 𝐼𝑡−1
𝑏  − 𝑑𝑚𝑡>1

𝑏  , ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (10) 

 

𝐼𝑡
𝑏 ≥  𝑠𝑠𝑏 , ∀ 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (11) 

 

𝑦𝑡
𝑏 , 𝑥𝑡

𝑏 , 𝐼𝑡
𝑏   ≥ 0 (12) 

As previously mentioned, he proposed model intends 
to integrate appointment scheduling with inventory 
management rules. It is important to emphasize that, 
on the one hand, the aim is to produce a balanced 
number of blood units in order to avoid any kind of 
shortage, while also considering an appropriate 
inventory management of these same blood units. 
The objective function (1) reflects these two 
principles by minimizing the variation of produced 
units for different blood types between consecutive 
days (2 and 3) and the total costs related with the 
blood unit’s storage (4). Since these two terms have 
different order of magnitude, the maximum values 
for each one of them were added in order to 
normalize these values and have an adequate 
solution. Moreover, in order to solve this bi-objective 
optimization problem the weighted sum method is 
implemented. This method has the objective of 
finding a unique solution, which means that combines 
the two terms previously defined into one scalar. 
These weights are defined by 𝛼 and 𝛽. On the set of 
constraints, equation (5) defines the number of 
planned blood units for each day and blood type. It is 
assumed that there are three types of donors: donors 
that already have an appointment scheduled, donors 
that will make an appointment to donate and donors 
that randomly appear without any reservation to 
donate. Therefore, the number of planned units for 
each day and blood type is given by the sum of pre 

allocated slots (𝑥𝑡
𝑏), the number of donors that 

already have an appointment (𝑑𝑎𝑡
𝑏) and the number 

of donors that randomly appear without any 

appointment for each for each blood type (𝑑𝑛𝑡
𝑏). 

Furthermore, equation (6) ensures that the total 
number of donations for each day does not surpass 
the maximum capacity of the collection center. 
Equations (7) and (8) force the total number of slots 
to be around the total number of expected booked 
donors (𝑑𝑏). In a perfect scenario, the number of 
booked donors should be equal to the number of the 

slots that we want to preallocate (𝑥𝑡
𝑏) and the 

number of donors that already have an appointment 

(𝑑𝑎𝑡
𝑏) over the time horizon. However, it is not 

possible to know the exact number of donors that will 
make an appointment. Consequently, a flexibility 
degree (0 ≤ 𝜑 ≤ 1) is defined guaranteeing that the 
total number of available slots will be defined by a 
range between (1 −  𝜑)𝑑𝑏 and (1 +  𝜑)𝑑𝑏 . The 
higher the value of the flexibility degree, more 
uncertainty is around the total expected number of 
donors. However, for this work we will consider the 
value of 𝜑 as 0. Regarding the inventory management 
rules, equations (9) and (10) define the inventory 
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levels at the end of each period for each blood type 
which is given by the sum between the number of 

planned blood units (𝑦𝑡
𝑏)  and the level of inventory 

in the previous period (𝐼𝑡−1
𝑏 )  minus the number of 

blood units expected to be used to treat patients in 

that period (𝑑𝑚𝑡
𝑏). This also means that we are 

assuming that every slot will be scheduled, and every 
donor will not miss the appointment to donate.  In 
order to minimise even more the possibility of any 
shortage, a safety stock (𝑠𝑠𝑏) is set for each blood 
type. Equation (11) assures that the inventory level 
for each blood type at the end of each period is equal 
or above of the safety stock level. Considering the 
functioning of the supply chain in section 4.1. once 
the blood units arrive to Niguardia Hospital either 
they can be used or can be transported to another 
hospitals or healthcare facilities. For this reason, a 
maximum level for the inventory was not considered. 
Finally, equation (12) defines the domain of the 
decision variables. 

Assumptions and Limitations 
The assumptions and limitations of the model are 

now presented, although some of them were already 

mentioned in the previous section. As mentioned 

above, there are two distinct objectives: assign slots 

per day and per blood type guaranteeing that this will 

generate a balanced production of blood units and 

minimize at the same time the inventory costs. 
Regarding the collection process, it is assumed that 

every donor (expected donors and not expected 

donors) will show up and that every slot will be 

fulfilled on the day that was assigned.  Moreover, the 

model previously developed by Baş et al. (2018) did 

not consider a fixed maximum capacity to perform 

donations but a penalty when the number of 

donations exceeded the time available by the 

physicians. Also, the donation process itself is 

considered as being a procedure to obtain a single 

blood unit, not considering the different donation 

types (Whole Blood, Plasma, Platelets and Red Blood 

Cells). This means that the model developed in this 

work is less flexible regarding the blood collection 

rules. 
Concerning the blood usage and its inventory 

management, there are a few aspects that were not 

included. As described before, blood is a perishable 

product that has a shelf life. However, in the 

proposed model its perishability is not being 

considered. Furthermore, we assume that there is no 

wastage of blood units. 

Assumptions regarding the values defined por some 

of the parameters were also considered, since some 

data was not possible to collect. 

 

 

5. RESULTS 

The proposed model was implemented in GAMS 

language, in a computer equipped with an AMD 

Ryzen 4700 U processor of 2.00 GHz and 8 GB of 

RAM. The considered scenarios to evaluate the model 

as well as its results are presented below. 

Objective Function Values 

Figure 2 – Objective Function Values per Scenario 
Analysing the results, it is possible to conclude that 
scenario 1 which considers a high level of demand 
(1000 blood units) performs better than scenario 2 
(500 blood units) and the latter better than scenario 3 
which considers a low demand (250 blood units). It is 
also possible to deduce that in all scenarios, the term 
that is related to inventory cost is the one that most 
contributes to the total value of the objective 
function and the one that most differs among the 
scenarios considered. This term represents 87%, 88% 
and 89% of the total objective function for Scenario 1 
(H), 2 (M) and 3 (L), respectively. That is, considering 
that the value of donors expected to donate (input 
value) is the same for all scenarios and there is no 
rejection of donors, we realize that the increasing 
value of the inventory cost term is related to the 
decrease in demand. In other words, for the same 
number of blood units collected, the lower the 
demand, the more units will be stored. Thus, the 
inventory cost will increase as well as the value of the 
objective function. 
In contrast, analysing the second term of the 
objective function that is related to balancing the 
production of blood units, although it presents a good 
performance since its values are lower, it is also 
possible to perceive that this value is practically 
unchanged in the different scenarios. For this term, 
scenario 1 performs better, followed by scenario 3 
and lastly scenario 2. Furthermore, the values of this 
element represent 13%, 12% and 11% of the total 
value of the objective function for scenarios 1, 2 and 
3, respectively. 
Production of Blood Units 
In this metric, it was possible to conclude that the 
production of blood units is fairly constant during the 
28-day time horizon defined for the three scenarios. 
However, it was also possible to observe that each 
blood type has at least a major oscillation during the 
time horizon, being most evident in blood types b1 
and b7. This major fluctuation means that the system 
is running towards finding the lowest value possible 

0

0.1

0.2

0.3

Scenario 1 Scenario 2 Scenario 3

OF Term 1 OF Term 2
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of blood units produced in the first days of the time 
horizon, in order to not increase excessively the 
number of stored units. The results for Scenario 1 (H) 
are presented in Figure 3. 

Figure 3 – Blood Units Production: Scenario 1 (H) 
As previously acknowledged, the model presents a 
good performance for all the scenarios in terms of 
balancing the blood unit’s production. Moreover, this 
constant line of production might be related with the 
fact that the model is not considering the blood 
perishability. Since these oscillations are not 
considerably high, is possible to state that the 
inventory cost presents a bigger influence in the 
performance concerning the three scenarios. 
Inventory Cost and Inventory Levels 
In Table 1 it is possible to analyse the total inventory 
cost as well as the final inventory level regarding all 
blood types for each considered scenario.  
Table 1 – Inventory Cost and Final Levels per Scenario 

 Inventory Cost (€) Final Inv. Level 

Scenario 1 (H) 18 373 982 

Scenario 2 (M) 21 912 1 364 

Scenario 3 (L) 24 009 1 561 

The value for the total inventory cost is higher for 
Scenario 3 (L) and lower for Scenario 1 (H), which is 
directly related with the different level of demands 
defined for each scenario. Although is not possible to 
establish direct comparisons between the three 
results since they consider different demand values 
for the same number of expected donors, it is 
interesting to analyse that the gap is significantly 
higher between Scenario 1 and Scenario 2 (3539 €) 
than the difference between Scenario 2 and Scenario 
3 (2097 €), considering that the demand values were 
decreased in 50% from Scenario 1 to Scenario 2 and 
from Scenatio 2 to Scenario 3. This divergence is 
explained by the values assigned to the safety stock 
levels and the initial inventory levels for each 
scenario, since the proportion of decrease of these 
parameters was not the same as that defined for the 
decrease in demand between the considered 
scenarios. 
Regarding the gap between the inventory levels and 
the safety stock level, it can be stated that there is a 
trend for this gap to increase over the time horizon 
for every scenario, since as concluded before, the 
production of blood units is increased towards the  

end of the time horizon and the safety stock value for 
each blood is the same. Also, this steady increase is 
explained by the fact that a maximum inventory level 
is not being considered since the hospital can transfer 
blood units to another healthcare facilities and we 
start from an initial inventory level equal to the safety 
stock level. Once again, perishability is not being 
considered which influences this trend. 
However, it can be stated that the model presents a 
good performance in assuring that the blood levels 
are above the safety stock. 

Figure 4 – Inventory gap for Scenario 1 (H)  
Capacity Usage 
It is possible to state that the model presents a trend 
towards increasing the capacity used to make 
donations over the time horizon. This means that the 
model might be prioritizing the minimization of the 
inventory costs over the balancing, since the first 
component has a higher influence in the objective 
function value as seen before. One can also see that 
the greater the demand associated with each 
scenario, the greater the capacity used in the first 
days of the time horizon. However, it is also 
important to mention that we are dealing with a fairly 
high number of expected donors (total of 1723 
donors, an average of 62 per day). Considering that 
the collection centre has the capacity to perform 68 
donations per day, it means that the maximum 
capacity for the time horizon would be to receive a 
total of 1904 donors. This implies that in total, we will 
use 90% of the capacity for the time horizon. 

Figure 5 – Capacity Usage for Scenario 1 (H) 
It was possible to conclude for all scenarios that there 
is a moment from which maximum used capacity is 
reached and is maintained until the end of the time 
horizon. This is supported by Figure 5 for Scenario 1 
(H). 

0

5

10

15

20

25

30

t1 t3 t5 t7 t9 t11t13t15t17t19t21t23t25t27

0

50

100

150

200

250

300

350

t1 t3 t5 t7 t9 t11t13t15t17t19t21t23t25t27

0%

20%

40%

60%

80%

100%

t1 t3 t5 t7 t9 t11t13t15t17t19t21t23t25t27



9 
 

Sensitivity Analysis 
Weights for the Objective Function (𝜶 and 𝜷) 
This sensitivity analysis shows that with these 
variations there is a trade-off between the total 
inventory cost and the blood units’ production. The 
higher the weight of 𝛽, the higher the inventory cost 
and the lower the value of the objective function 
since we are removing weight from the total cost. In 
contrast, the production of blood units gets better 
balanced, which is supported by the decrease of the 
number of days with maximum capacity usage. With 
the increase in the weight of 𝛽, the number of days 
with use of the maximum capacity (68 donations) is 
lower. 
Considering a weight of 15% to 𝛼 and 85% to 𝛽, the 
results on Figure 6 shows that it is possible to 
increase the flexibility regarding receiving more 
donors than the number expected with a trade-off 
inventory cost of 1987€ since the capacity usage per 
day is more balanced when compared to Figure 5. 
Therefore, it is possible to state that the higher the 
weight of 𝛽 and the lower the weight of alpha, the 
more constant is the capacity usage, allowing the 
creation of a greater margin to meet unexpected 
donors, consequently increasing the total cost of 
inventory. 
Figure 6 – New capacity usage for Scenario 1 (H) 

Summing up, in one hand, we can increase the 
inventory cost and assure that there are no days with 
maximum capacity usage. On the other hand, we can 
decrease the inventory cost which results in a worse 
balance regarding the blood unit’s production. 
6. CONCLUSIONS 

A more efficient supply chain management is an 

extremely important aspect and a common goal for 

all companies in the different industries. In the 

particular case of the blood supply chain, its 

efficiency is even more critical and challenging, given 

not only the blood characteristics, but also the 

importance of this product in the treatment of 

patients in hospitals or other healthcare facilities. 

This efficiency can be applied in the various stages of 

the supply chain and can have several dimensions, 

from cost reduction, waste reduction, optimization of 

the collection process, among many others. As seen 

in the literature, most of the works developed 

concerning this objective, focus only on the 

optimization of one of the echelons of the supply 

chain. However, although the frequency of an 

integrated model approach has increased in recent 

years, the integration of inventory management with 

the collection stage has been poorly explored. The 

idea behind this work is precisely to contribute to 

that end, addressing the particular case in the Italian 

Blood Donation System, AVIS Milan. 

This dissertation aims to create the initial steps 

towards an integrated strategy between the 

appointment scheduling and inventory management 

rules, with the objective to have a balanced 

production of blood units, minimizing at the same 

time the inventory costs. Therefore, it is intended to 

carry on the work previously developed concerning 

the appointment scheduling decisions in AVIS Milan. 

To pursue this objective, it was established a relation 

between the produced blood units and the inventory 

levels, as well as defining a safety stock level for each 

blood type. 

The model was tested and evaluated under different 
demand scenarios since it was not possible to collect 
such data and real collection data from AVIS Milan: 
Scenario 1 that considers a high level of demand, 
Scenario 2 for a medium level of demand and 
Scenario 3 for a low level of demand. In the first 
approach, in which was defined a weight of 50% for 
each objective (balance the production of blood units 
and minimize the inventory costs), the results 
demonstrated that the inventory cost term of the 
objective function was the one that presented the 
largest percentage in the total objective function 
value for all three scenarios. Regarding the blood 
unit’s production, the production line for each blood 
type was quite constant presenting a major 
oscillation at a certain point of the time horizon in the 
blood types with higher demand. This demonstrates 
that the model is working in a way where it finds the 
minimum value of blood units to produce while 
satisfying the demand, keeping this value constant 
and then performs the lowest possible increase in 
order to perform the remaining donations, 
minimizing the amount of blood units that are stored 
and not used. This behaviour is also related to the 
fact that perishability for blood units is not being 
considered, which is actually one of the limitations 
for this model. Additionally, for all three scenarios, 
regarding the capacity used per day, the model 
showed an accumulation of donations in the second 
half of the considered time horizon which led to a 
maximum capacity usage in several of these days. 
Although we are assuming an exact number of 
expected donors, this represents that the model 
presented a low flexibility in receiving more donors 
than the expected ones in the referred time. 
Afterwards, a sensitivity analysis was performed in 
some of the considered parameters. The variation of 
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the weights defined for each one of the terms of the 
objective function showed that it was possible to 
obtain a more balanced solution in terms of capacity 
usage. More specifically, it was possible to conclude 
that the inventory cost term dominates the balance 
concerning the blood units’ production, meaning that 
defining a weight of 50% for each term implies that 
the inventory cost is being more privileged than the 
balance production balance. In fact, when a weight of 
85% for the balance and 15% for the inventory cost, 
the model was able to create a more balanced 
solution where the maximum capacity usage was not 
reached in the time horizon and consequently 
increasing the flexibility to receive more donors than 
the expected among the time horizon. However, it 
important to note that a trade off cost is attached to 
this solution. 
Should this model be used as a basis for future 
development, it is necessary to establish some 
recommendations to AVIS and the hospital. Firstly, it 
is important to establish a rule for the definition of 
safety stock level. This parameter does not have to 
take a necessarily constant value for every time 
horizon and based exclusively on demand. For 
example, the safety stock can be higher the greater 
the uncertainty of the expected demand and the 
expected number of donors in the planning time. In 
addition, and as seen previously, there might exist 
more balanced solutions according to the variation of 
some parameters. However, these variations require 
a trade-off, and it will be up to AVIS and the hospital 
to assess which is the most balanced solution 
regarding all the aspects considered. 
As a proposal for future work, it is suggested to 
minimise the number of assumptions and limitations 
that were mentioned in this work. One of the 
fundamental characteristics of blood is its 
perishability and not being considered is biasing the 
results of the proposed model. Moreover, taking this 
aspect into consideration would allow for a much 
more realistic inventory management than the one 
proposed. Another aspect that should be considered 
is the uncertainty associated not only to the expected 
number of donors, but also to the expected demand. 
These considerations would allow to create a much 
more robust and realistic integrated system. 
Even though it would need further validation by 
comparing the results with more precise and realistic 
data, this model can be seen as a good starting point 
to increase the blood supply chain efficiency through 
the integration of the appointment scheduling with 
inventory management rules. 
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